A grid algorithm for bound constrained optimization of noisy functions
نویسنده
چکیده
The optimization of noisy functions is a common problem occurring in various applications. In this paper, a new approach is presented for low-dimensional bound constrained problems, based on the use of quadratic models and a restriction of the evaluation points to successively refined grids. In the noiseless case, global convergence of the algorithm to a stationary point is proved; in the noisy case a bound for the limit accuracy is derived. An extensive numerical comparison with two widely used methods – a quasiNewton method and the simplex method of Nelder and Mead – performed on a standard collection of test problems, shows that the new algorithm is comparable with quasi-Newton in the noiseless case, and is much more robust than NelderMead in the noisy case. If performance is measured solely by the number of function evaluations needed to achieve a prescribed reduction of the difference to the minimal function value (as for instance in the optimization of experiments), the new algorithm is also significantly faster than Nelder-Mead. Revised version, February 1995
منابع مشابه
On the hybrid conjugate gradient method for solving fuzzy optimization problem
In this paper we consider a constrained optimization problem where the objectives are fuzzy functions (fuzzy-valued functions). Fuzzy constrained Optimization (FO) problem plays an important role in many fields, including mathematics, engineering, statistics and so on. In the other side, in the real situations, it is important to know how may obtain its numerical solution of a given interesting...
متن کاملAn Exact Algorithm for the Mode Identity Project Scheduling Problem
In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project schedulin...
متن کاملMulti-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm
One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملAn Algorithm Based on Theory of Constraints and Branch and Bound for Solving Integrated Product-Mix-Outsourcing Problem
One of the most important decision making problems in many production systems is identification and determination of products and their quantities according to available resources. This problem is called product-mix. However, in the real-world situations, for existing constrained resources, many companies try to provide some products from external resources to achieve more profits. In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995